

MabSelect PrismA™ X protein A resin Affinity chromatography Instructions for Use

 $\label{lem:lem:matching} Mab Select \ Prism A^{\intercal} \ X \ protein \ A \ resin \ is \ a \ Bio Process^{\intercal} \ affinity \ chromatography \ resin for \ capturing \ high-titer \ monoclonal \ antibodies \ from \ large \ volumes \ of feed \ by \ packed \ bed \ chromatography.$

Key features of the resin include the following:

- cost-efficiency at low resin utilization, such as in clinical manufacturing
- high dynamic binding capacity; higher than 80 g/L at 6 min residence time and 74 g/L at 4 min residence time, in a well-packed column
- The alkaline-tolerant protein A-derived ligand allows for regular use of 0.5 to 1.0 M NaOH for cleaning-in-place (CIP)
- convenience for use in short bed height formats and suitable for rapid cycling chromatography (RCC) to further improve productivity in the protein A purification step

Table of Contents

1	Introduction	3
2	Product description	4
3	Process development	8
4	Operation	9
5	Removal of leached ligand from the final product	12
6	Packing columns 6.1 General packing information	14 15 18
7	Cleaning-in-place (CIP)	24
В	Sanitization	26
9	Storage	27
10	Scale-up	28
11	Troubleshooting	29
12	Ordering information	30

1 Introduction

Important

Read these instructions carefully before using the product.

Safety

For safe use and handling of the product, refer to the Safety Data Sheet.

Intended use

The product is intended for research use and manufacturing use only. The product must not be used in any clinical or *in vitro* procedures for diagnostic purposes.

2 Product description

BioProcess resin

BioProcess chromatography resins are developed and supported for production-scale chromatography. BioProcess resins cover all purification steps from capture to polishing.

All BioProcess resins are produced with validated methods and are tested to meet manufacturing requirements. Secure ordering and delivery routines give a reliable supply of resins for production scale. Regulatory Support Files (RSF) are available for BioProcess resins to assist in process validation and submissions to regulatory authorities. The RSF contains additional product data such as characteristics, quality, and chemical stability.

Resin description

The protein A-derived ligand of MabSelect PrismA X resin is produced in *Escherichia coli*. Fermentation and subsequent purification are performed in the absence of animal-derived products. The ligand is specifically engineered to create an affinity resin with enhanced alkaline stability and protease stability. The specificity of binding to the Fc region of IgG is similar to that of conventional protein A and provides efficient and reliable purification in one step. Cytiva™ MabSelect PrismA X protein A resin is designed for high-titer antibody processes and has very high dynamic binding capacities. The resin is suitable for rapid cycling chromatography (RCC), as it achieves high dynamic binding capacity at short residence times. Alkaline stability, high capacity, low ligand leakage, and a rigid base matrix make MabSelect PrismA X ideal for the purification of monoclonal antibodies for clinical applications.

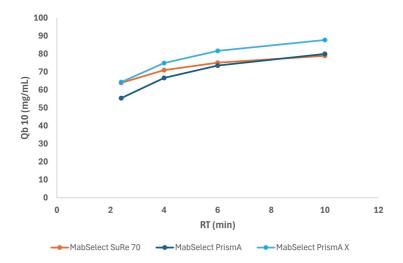
The characteristics of the resin are summarized in Resin properties, on page 5.

Resin properties

Property	MabSelect PrismA X
Matrix	Highly cross-linked agarose
Particle size, d _{50v} ¹	~ 50 µm
Ligand	Alkaline-stabilized, protein A-derived (from <i>E. coli</i>)
Coupling chemistry	Ероху
Dynamic binding capacity, QB _{10%} ²	~ 80 mg trastuzumab/mL resin, 6 minutes residence time
	~ 74 mg trastuzumab/mL resin, 4 minutes residence time
Chemical stability	Stable in aqueous buffers commonly used in protein A chromatography
pH stability	
Operational ³	3 to 12
CIP ⁴	2 to 14
Maximum operating flow	220 cm/h (20 cm bed height) ⁵
velocity	400 cm/h (10 cm bed height)
Temperature stability	2°C to 40°C
Storage	2°C to 8°C, 20% ethanol or 2% benzyl alcohol
Delivery conditions	20% ethanol

¹ Median particle size of the cumulative volume distribution.

Determined at 10% breakthrough by frontal analysis at a mobile phase velocity of 100 cm/h (6 min residence time) and 150 cm/h (4 min residence time) in a HiScreen™ column with a 10 cm bed height in PBS buffer, pH 7.4.

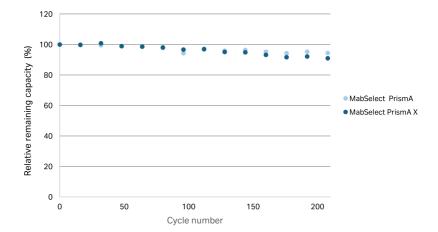

³ pH range where the resin can be operated without significant change in function.

⁴ pH range where the resin can be subjected to cleaning- or sanitization-in-place without significant change in function.

⁵ In an AxiChrom™ 1000 column with 100 cm inner diameter at 20 cm bed height, operating pressure up to 3 bar, using buffers with the same viscosity as water at 20°C.

Dynamic binding capacity

MabSelect PrismA X has a high dynamic binding capacity at commonly used residence times. The figure below shows the dynamic binding capacity of the resin compared to MabSelect PrismA and MabSelect™ SuRe 70 at 10% breakthrough (QB $_{10\%}$) for trastuzumab (with a bed height of 10 cm) tested in HiScreen columns.


As MabSelect PrismA X has high dynamic binding at short residence times, the resin is suitable to use in rapid cycling chromatography (RCC) mode to further reduce resin volumes, increase grams of mAb produced per liter of resin, and decrease overall resin costs.

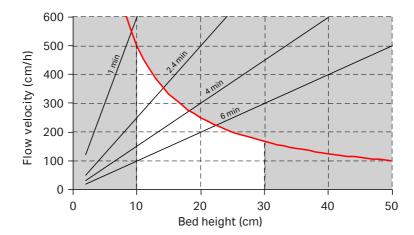
Alkaline stability

The alkaline-tolerant protein A-derived ligand allows for regular use of 0.5 to 1.0 M NaOH for cleaning-in-place (CIP). The alkaline stability of MabSelect PrismA X resin was evaluated in an accelerated study where the resin was exposed to 0.5 M NaOH in intervals of 4 hours. Each interval corresponded to 16 CIP cycles with 15 minutes contact time.

MabSelect PrismA X resin retains more than 90% of its initial DBC after 200 cycles with 0.5 M NaOH and has similar alkaline stability as MabSelect PrismA resin.

The graph below shows the relative remaining dynamic binding capacity. The resin remains stable after cleaning with 0.5 M NaOH for 200 cycles.

3 Process development


Recommended formats

For optimization of MabSelect PrismA X resin in small-scale columns, it is recommended to use prepacked HiScreen or HiTrap™ columns. The resin can also be packed in laboratory-scale columns, such as Tricorn™ columns.

Operating window

The figure below shows the recommended combinations of bed height and operational flow velocity for the resin at large scale and the resulting residence time in the interval 1 to 6 minutes.

- The red curved line shows the calculated large-scale column pressure restriction that is 3 bar according to specification (220 cm/h at 3 bar and 20 cm bed height).
- The white area represents the recommended operating window.
- At 10 cm bed height, the linear velocity can be increased to approximately 400 cm/h.

Choose a residence time that meets the requirements for dynamic binding capacity and fluid velocity according to the figure above. The other cycle operations including wash, elute, and equilibration steps can be run at maximum operational flow velocity, see *Resin properties, on page 5*.

Use the figure as a guide when determining a suitable bed height and operating flow velocity in terms of residence time and thus capacity and pressure drop.

4 Operation

Recommended buffers

With MabSelect PrismA X resin, it is recommended to use phosphate and acetate buffers for typical monoclonal antibody (mAb) processes. However, 20 mM sodium citrate can be used for screening purposes to determine a suitable elution pH, see *Screening protocol* (for elution pH).

Outline of a typical mAb capture process

The protocol below lists steps and conditions used in a typical large-scale purification.

Phase	Buffer	Volume	Residence time
Equilibration	20 mM sodium phosphate, 150 mM NaCl, pH 7.4	3 CV	6 min
Sample applica- tion	As required	70%– 80% of QB _{10%}	6 min
Wash 1	20 mM sodium phosphate, 500 mM NaCl, pH 7.0	5 CV	6 min
Wash 2	50 mM sodium acetate, pH 6.0	1 CV	6 min
Elution	50 mM sodium acetate, pH 3.5	3 CV	6 min
Acidic strip	100 mM acetic acid, pH 2.9	2 CV	6 min
CIP	0.5 to 1.0 M NaOH	3 CV*	5 min
Re-equilibration	20 mM sodium phosphate, 150 mM NaCl, pH 7.4	3-5 CV [†]	5 min

^{* 15} min contact time in reverse-flow mode.

Screening protocol (for elution pH)

Determine the highest pH that allows for efficient desorption of the target molecule from the column. Doing so prevents denaturation of sensitive molecules due to exposure to low pH.

[†] In reverse-flow mode.

The steps below are a starting point for screening to determine suitable elution conditions for the target molecule, using a low sample load, for example, 5 to 10 mg/mL of resin.

Note:

A blank run, including CIP, is recommended before the first run with antibody feed. This decreases the ligand leakage during the chromatography step.

Phase	Solution	Volume
Equilibration	20 mM sodium phosphate, 150 mM NaCl, pH 7.4	5 CV
Sample appli- cation Small amount of antibody sample, 6 min residence time		As required
Wash	20 mM sodium phosphate, 150 mM NaCl, pH 7.4	5 CV
Elution	20mM sodium citrate, linear gradient, pH 7.4 to pH 3.0	10 CV
Acidic strip	20 mM sodium citrate, pH 3.0	5 CV
CIP 0.5 to 1.0 M NaOH, 15 min residence time		At least 3 CV
Re-equilibra- tion	20 mM sodium phosphate, 150 mM NaCl, pH 7.4	5 CV

If the results are not optimal, we also recommend screening various residence times and wash parameters.

Optimizing sample load

The dynamic binding capacity for the target antibody should be determined by frontal analysis using real process feedstock. The dynamic binding capacity is a function of the sample residence time and must therefore be defined for different sample residence times, see *Dynamic binding capacity*, on page 6. Set the load during a mAb capture process to 70% to 80% of the dynamic binding capacity determined.

Optimizing the wash conditions

It is recommended to optimize the wash procedure with respect to the following:

- · conductivity
- pH
- volumes
- flow rate

Step purification

After suitable elution conditions have been determined, it is recommended to set up a step elution protocol, particularly for large-scale purifications. Target molecules are thus eluted in a more concentrated form, with lower buffer consumption and shorter cycle times. It might be necessary to decrease the flow rate as high protein concentrations during elution can result in high column pressure.

5 Removal of leached ligand from the final product

Leakage of the protein A ligand of MabSelect PrismA X resin can be analyzed using PrismA ELISA Kit (29707299). MabSelect PrismA protein A free ligand in solution is available for leakage determination and other analytical purposes.

Ligand leakage from the resin is generally low. However, in many applications it is a requirement to remove leached ligand from the final product.

Techniques to remove leached ligand include:

- ion exchange chromatography (IEX)
- multimodal chromatography (MMC)
- size exclusion chromatography (SEC)

For an example of the removal of leached ligand and antibody aggregates, refer to the application note *Two-step purification of monoclonal IgG1 from CHO cell culture supernatant (CY13148)*, available on *cytiva.com*. Methods used for the removal of leached ligand from MabSelect SuRe and MabSelect SuRe LX are also applicable to the removal of leached ligand from MabSelect PrismA X.

6 Packing columns

In this chapter

Section	on	See page
6.1	General packing information	14
6.2	Packing laboratory-scale columns	15
6.3	Packing large-scale columns	18
6.4	Evaluation of packed column	21

6.1 General packing information

Definitions

The height of a bed that has settled by gravity differs from the height of a bed that has settled at a given flow velocity (consolidated). Therefore, the compression factor (CF) must be separated from the packing factor (PF). The parameters for calculating the bed height are described below:

L_{settled} Settled bed height (cm)

Bed height measured after settling by gravity

L_{cons} Consolidated bed height (cm)

Bed height measured after settling at a given flow velocity

L_{packed} Packed bed height (cm)

CF Compression factor, CF = $L_{\text{settled}} / L_{\text{packed}}$

PF Packing factor, PF = L_{cons}/L_{packed}

A_C Cross-sectional area of the column (cm²)

 V_C Column volume, $V_C = L_{packed} \times A_C$ (mL)

C_{slurry} Slurry concentration (%)

Slurry preparation

Slurry preparation can be performed manually, or mechanically, for example by using a Media Wand $^{\rm M}$ or a Media Handling Unit. Media Wand is suitable for large-scale packing, suspending the resin directly in the container and transferring it to the slurry tank in a single operation. For small-scale packing, shaking gives good results. Alternatively, use soft stirrers without sharp edges for stirring. Measure the slurry concentration accurately to get the correct amount of resin for packing to target bed height or compression. Let the resin settle overnight in 20% ethanol in a measuring cylinder to determine the slurry concentration or use the Slurry Concentration Kit, see *Related products*, on page 30.

Compression factor for MabSelect PrismA X

The compression factor (CF) is used to calculate the required resin volume (V) for packing a desired bed height:

 $V = (A_C \times L_{packed} \times CF) / C_{slurry}$

CF for gravity settled MabSelect PrismA X in 20% ethanol is 1.12.

6.2 Packing laboratory-scale columns

Recommended columns

The following table lists the properties of laboratory-scale Tricorn columns.

Note:

If a packed Tricorn column is used to determine the dynamic binding capacity, note that the results of a prepacked HiScreen column or a packed AxiChrom column is approximately 15% higher due to differences in packing methods.

Column	Inner diameter (mm)	Maximum bed volume (mL)	Maximum bed height (cm)
Tricorn 5/100	5	2	10
Tricorn 10/100	10	8	10

Materials

- MabSelect PrismA X protein A resin
- plastic spoon or spatula
- P4 glass filter funnel
- vacuum suction equipment
- filter flask
- measuring cylinder
- · packing solution
- · Tricorn column
- Tricorn packing tube
- Tricorn 5 medium filter kit

Make sure that all materials and equipment are at room temperature before packing the column.

Equipment

An $\mathsf{ÄKTA}^\mathsf{M}$ system or a stand-alone pump can be used for packing, depending on the flow rate required.

To avoid column drainage during packing, a pressure relief valve can be attached to the outlet valve of the system. Setting a low back pressure of 0.02 MPa (0.2 bar, 2.9 psi) is sufficient.

Equilibrate to packing solution

Follow the steps below to equilibrate and to suspend the resin in packing solution to the slurry concentration recommended.

Step	Action	
1	Attach a glass filter funnel to a filter flask.	
2	Suspend the resin by shaking the measuring cylinder and pour the slurry into the glass filter funnel.	
3	Wash the resin 5 times with 2 CV packing solution. Gently stir with a spatula between additions.	
4	Pour the washed resin from the glass filter funnel into a beaker.	
5	Add packing solution to obtain the slurry concentration that is recommended for the column used.	

Pack Tricorn columns

The following table lists the packing properties of Tricorn columns.

Table 6.1:

	Tricorn 5	Tricorn 10
Bed height (cm)	10	10
Packing solution	0.2 M NaCl i	n 20% ethanol
Slurry concentration (%)	50	50
Packing velocity (cm/h)	611	611
Packing flow rate (mL/min)	2	8
Conditioning flow velocity (cm/h)	611	611
Conditioning flow rate (mL/min)	2	8

Follow the instructions below to pack Tricorn columns

Step	Action
1	Wet the filters with ethanol and assemble the column according to <i>Tricorn Empty High Performance Columns (28409488)</i> , available on <i>cytiva.com</i> .
2	Attach a packing connector and a packing tube on top of the column tube. Fasten the column tube in a stand.

Step	Action	
3	Fill the column with slurry suspended in packing solution and top up with packing solution.	
4	Assemble a bottom piece to the top of the packing tube.	
	Note: Make sure that no air is trapped under the filter.	
5	Connect the column top to the pump and start a downflow with packing solution. The packing flow velocity is shown in <i>Table 6.1, on page 16</i> .	
6	Let the flow continue for 10 minutes.	
7	Turn off the flow and attach a stop plug to the column bottom.	
8	Disconnect the packing tube and remove excess resin from the top of the tube using a pipette.	
9	Top up the column with packing solution.	
10	Attach the top adapter.	
	Note: Make sure that no air is trapped under the filter.	
11	Turn the adapter downwards until it is 1 to 2 mm above the resin bed to displace the air in the adapter tubing.	
12	Connect the top adapter to the pump. Make a drop-to-drop connection to prevent air from entering the column.	
13	Start a downflow with packing solution. The conditioning flow velocity is shown in <i>Table 6.1, on page 16</i> .	
14	Let the flow run for 5 minutes.	
15	Mark the bed height and stop the pump.	
16	Turn the adapter downwards until it reaches the resin bed and then turn the adapter an extra 1/3 turn.	
17	Lock the top adapter by pushing down the lock ring.	
18	Measure the bed height to determine packing efficiency.	

The column is ready for efficiency testing.

6.3 Packing large-scale columns

Introduction

MabSelect PrismA X can be packed in pilot- and large-scale columns. There are several possible packing procedures, depending on the column and equipment used.

Intelligent Packing in AxiChrom columns

When packing AxiChrom 50 to 200 columns with an ÄKTA system, Intelligent Packing control is managed by the UNICORN™ system control software. For AxiChrom 300 to 1600 columns, Intelligent Packing is performed by the AxiChrom column control unit (AxiChrom Column Controller or AxiChrom Master), a separate unit that comprises a touchscreen-operated user interface, or from the UNICORN software on the ÄKTAprocess™ system.

In the Intelligent Packing wizard, packing methods are created by entering values for the following packing variables:

- column
- resin
- · packing factor
- slurry concentration
- · target bed height

Recommended AxiChrom columns

The following table lists the properties of the recommended AxiChrom columns.

The $10 \, \mu m$ or $20 \, \mu m$ bed support can be used with the columns. Use the $20 \, \mu m$ bed support when a crude lysate is used.

Column	Inner diameter (mm)	Bed volume ¹ (L)	Bed height (cm)
AxiChrom ²	50 to 200	0.2 to 13	max. 30
AxiChrom ²	300 to 1600	7 to 804	max. 30

¹ Bed volume range calculated from 10 cm bed height to maximum bed height.

All large-scale columns can be supplied as variable bed height columns. Do not choose large-diameter columns if the bed height is low.

Packing solution

Typical packing solutions for MabSelect PrismA X are:

² Intelligent Packing method can be used.

- water
- 20% ethanol
- NaCl solution

Packing factors for MabSelect PrismAX

When packing AxiChrom columns, the packing factor (PF) is used to calculate the target bed height after the consolidation step. MabSelect PrismA X settles differently in different solutions. Adding NaCl to the packing solution slows the settling of the resin beads and allows them to settle less tightly.

Solution	Packing factor
Water	1.13
20% ethanol	1.13
0.15 M NaCl	1.20

With the recommended packing factor of 1.13, the compression factor for MabSelect PrismA X is 1.12.

Packing variables for AxiChrom columns

The following table lists the packing variables for AxiChrom columns. The packing methods described here apply to bed heights of up to 30 cm.

Note:

Addition of NaCl to the resin slurry solution affects how tightly the resin settles; hence a higher packing factor is needed to achieve optimal compression. When packing lab- and pilot-scale columns, it is highly recommended that NaCl is used. When packing process-scale columns, different solutions can be used.

Docking verichles	Columns		
Packing variables	AxiChrom 50 to 200	AxiChrom 300 to 1000	
Packing solution	0.15 M NaCl	water	
Packing speed/ velocity	60 cm/h	60 cm/h	
Packing factor	1.20±0.02	1.13±0.03	
Flow conditioning (3 CV)	440 cm/h for 10 cm bed height 220 cm/h for 20 cm bed height 165 cm/h for 30 cm bed height	220 cm/h for 20 cm bed height	

Note:

The packing factors are to be used when packing a column with 20 cm bed height. Small adjustment might be needed when packing a bed height that is higher or lower than 20 cm. Decrease the packing factor for bed height higher than 20 cm and increase the packing factor for bed height lower than 20 cm.

6.4 Evaluation of packed column

Introduction

The quality of the packed bed and the column performance must be evaluated initially, and then monitored throughout the lifetime. The methods for measuring the efficiency of a packed column are in terms of the height equivalent to a theoretical plate (HETP) and the asymmetry factor (A_s).

Frequency

Test the column efficiency to evaluate the packing quality in the following conditions:

- after completion of a packing procedure
- at regular intervals during the working life of the column
- when a decrease in separation performance is observed

Column efficiency testing

Packed column efficiency is best expressed in terms of the height equivalent to a theoretical plate (HETP) and the asymmetry factor (A_s). These values are easily determined by applying a test sample such as 1% acetone solution or sodium chloride solution to the column.

Note: If sodium chloride solution is chosen, use a concentration of 0.8 M NaCl in water as sample and 0.4 M NaCl in water as eluent.

The calculated plate number depends on the test conditions and must only be used as a reference value. It is important that the test conditions and the equipment used remain the same so that the results are comparable.

Test results are affected by changes in:

- solute
- solvent
- eluent
- sample volume
- flow velocity
- · liquid pathway
- temperature
- · chromatography system

For more information about column efficiency testing, refer to the application note *Column efficiency testing (CY13149)*, available on *cytiva.com*.

Method for measuring HETP and As

Calculate HETP and A_s from the UV curve (or conductivity curve) as stated below:

HETP =
$$\frac{L}{N}$$
 L = bed height (cm)

N = number of theoretical plates

$$N = 5.54 \times \left(\frac{V_R}{W_h}\right)^2$$

 $V_{R}\!=\!\text{volume}$ eluted from the start of sample application to the peak maximum

 W_{h} = peak width measured as the width of the recorded peak at half of the peak height

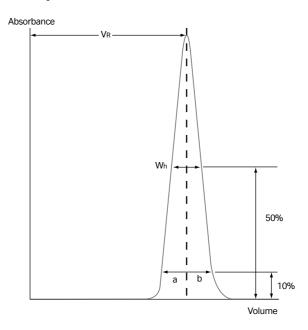
 V_R and W_h are in the same unit

The concept of reduced plate height is often used for comparing column performance. The reduced plate height (h) is calculated as follows:

$${\rm h=\frac{HETP}{d_{50v}}} \qquad \qquad {\rm d_{50v}=median~particle~size~of~the~cumulative~volume~distribution~(cm)}$$

As a guidance, h < 3 is acceptable.

The peak must be symmetrical, and the asymmetry factor must be as close to 1 as possible. A typical acceptable range is $0.8 < A_s < 1.8$.


A change in the shape of the peak is usually the first indication of bed deterioration due to excessive use.

The peak asymmetry factor is calculated as follows:

$$A_s = \frac{b}{a}$$
 b = descending part of the peak width at 10% of the peak height

a = ascending part of the peak width at 10% of the peak height

The figure below shows a UV trace for acetone in a typical test chromatogram from which the HETP and A_s values are calculated.

7 Cleaning-in-place (CIP)

Introduction

CIP is a procedure that removes impurities or contaminants such as lipids, endotoxins, nucleic acids, and precipitated or denatured proteins that remain in the packed column after regeneration. Regular CIP prevents the buildup of impurities or contaminants in the packed bed and helps to maintain capacity, flow properties, and general performance. MabSelect PrismA X is an alkaline-stabilized chromatography resin that allows for the use of 0.5 to 1.0 M NaOH for CIP.

Note: It is recommended to perform an acidic strip (pH 3) before CIP in order to remove impurities and target molecules that were not completely eluted.

It is recommended to perform a CIP in the following situations:

- before first-time use or after long-term storage
- · after each cycle with real feed
- when a reduction in column performance such as an increase in back pressure is observed
- to prevent potential cross-contamination or carry-over, when the same column is used for purification of different proteins or protein lots and batches

CIP optimization

NaOH concentration, contact time, and frequency are typically the main parameters to vary during CIP optimization. Longer contact times increase CIP efficiency. However, this can also lead to a decrease in dynamic binding capacity.

CIP conditions must be designed for efficiency and minimal loss of capacity. The characteristics of the feed material determine the final CIP. However, the general recommendation is to clean the column every cycle during normal use. Depending on the type of impurities or contaminants, a combination of protocols might be required, for example, 0.5 M NaOH every cycle and 1.0 M NaOH every 10 cycles.

For challenging cases where CIP with NaOH is not sufficient to restore the column performance, it is recommended to use an extended protocol including wash with 100 mM thioglycerol, pH 8.5 followed by CIP with 0.5 to 1.0 M NaOH. For more details, refer to the application note *High-throughput process development for design of cleaning-in-place protocols (CY14702)*, available on *cytiva.com*.

CIP recommendation

CIP is usually performed immediately after regeneration or strip. Before applying the alkaline NaOH CIP solution, it is recommended to equilibrate the column with a neutral pH solution. This is to prevent direct contact between low pH elution buffer and high pH NaOH solution inside the column. Mixing acid and alkaline solutions might cause a temperature rise in the column. It is recommended to perform CIP in reverse-flow mode.

CIP protocol

Follow the steps below to perform a CIP.

Step	Action
1	Wash the column with 3 CV binding buffer at pH 7 to 8.
2	Wash with at least 3 CV 0.5 to 1.0 M NaOH in reverse-flow mode, with a contact time of 15 minutes.
3	Wash immediately with at least 5 CV binding buffer at pH 7 to 8 in reverse-flow mode, or until pH and conductivity are stable.

8 Sanitization

Introduction

Sanitization reduces microbial contamination of the chromatographic bed to a minimum. The resin is alkaline-stabilized allowing for the use of NaOH as sanitizing agent. Depending on concentration, NaOH is very effective for inactivating viruses, bacteria, yeasts, and endotoxins. For more information, refer to the application note Use of sodium hydroxide for cleaning and sanitization of chromatography resins and systems (CY13951), available on cytiva.com.

Note:

Microorganisms are inactivated more effectively by using higher NaOH concentrations and longer contact times. However, these conditions can also lead to a decrease in dynamic binding capacity. Therefore, sanitization conditions must be evaluated to maximize microbial killing and to minimize loss of dynamic binding capacity.

Sanitization protocol

The steps below are a starting point for sanitizing the column.

Step	Action
1	Wash the column with 3 CV binding buffer at pH 7 to 8.
2	Wash the column with at least 3 CV of 0.5 M or 1.0 M NaOH in reverse-flow mode. Use a contact time of at least 1 h for either 0.5 M or 1.0 M NaOH.
3	Wash immediately with sterile binding buffer at pH 7 to 8 in reverse-flow mode for at least 5 CV, or until pH and conductivity are stable.

For challenging microbial contamination, a mixture of 30% to 40% 1- or 2-propanol in 0.5 M NaOH can be used. For bacterial endospore contamination, the resin can be cleaned with 20 mM peracetic acid (PAA) for 30 min or with 30 mM PAA for 15 min. It is recommended to use PAA sanitization only two or three times during the resin's lifetime. For more information, refer to the application note *Impact of sporicidal agent on MabSelect SuRe protein A resin lifetime (CY13949)*, available on *cytiva.com*.

9 Storage

Store unused resin in its container at a temperature of 2° C to 8° C. Make sure that the screw top is tightened completely.

Equilibrate packed columns with a solution containing 20% ethanol or 2% benzyl alcohol to prevent microbial growth.

After storage, equilibrate with binding buffer and perform a blank run, including CIP, before use.

10 Scale-up

Introduction

After optimizing the antibody purification at laboratory scale, the process can be scaled up to pilot and process scale.

- Keep the residence time constant to maintain the dynamic binding capacity.
- Select a bed volume according to required binding capacity.
- Select a column diameter according to the volume throughput requirements. Then
 determine the bed height that gives the desired residence time. Bed heights of 10 to
 25 cm are generally appropriate.

Note: The back pressure increases proportionally with increasing bed height at constant nominal velocity.

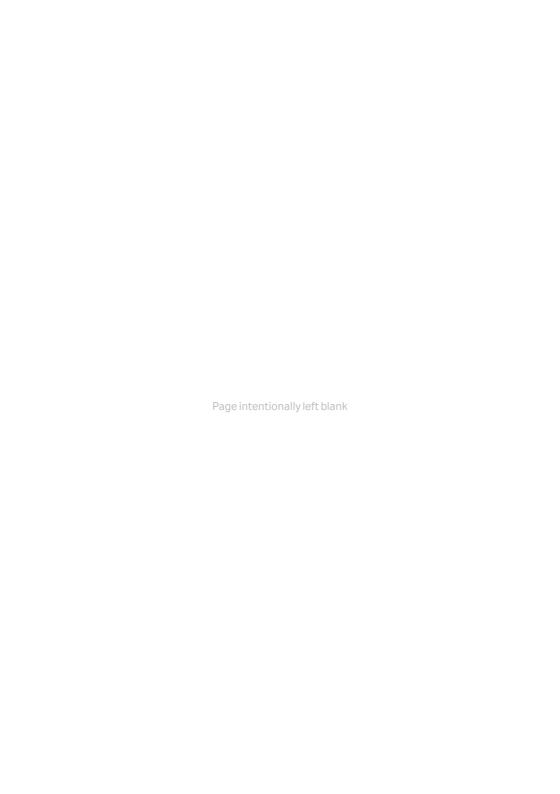
- Keep the sample concentration and the elution conditions constant.
- Verify the purification step.

See *Operating window, on page 8* for the appropriate operating window for MabSelect PrismA X.

11 Troubleshooting

Problem	Possible cause	Corrective action	
High back pressure during the run.	Solutions with high viscosity are used.	Decrease the flow rate.	
	The in-line filter is clogged.	Replace the in-line filter.	
	The column is clogged.	Perform CIP.	
	The adapter net/filter is clogged.	Clean or replace the adapter net/filter.	
Unstable pressure curve during sample	Air bubbles are trapped in the sample	Remove any air bubbles from the sample pump.	
loading.	pump.	Degas the sample using a vacuum degasser or an air trap.	
Gradual broadening of the eluate peak.	Insufficient elution and CIP caused by impurities or contaminants accumulating in the column.	Optimize the elution conditions, the CIP protocol, include acid regeneration after the elution step, or perform CIP more frequently.	
Gradual decrease in yield.	The sample load is too high.	Decrease the sample load.	
	Precipitation during elution.	Optimize the elution conditions.	
	Insufficient elution and CIP.	Optimize the elution conditions, the CIP protocol, include acid regeneration after the elution step, or perform CIP more frequently.	
Gradual increase in CIP peaks.	Insufficient elution and CIP.	Optimize the elution conditions, the CIP protocol, include acid regeneration after the elution step, or perform CIP more frequently.	
High ligand leakage during the first purification cycle.	The column is new.	Perform a blank run, including CIP, before the first purification cycle on a new column.	

12 Ordering information


For additional information, refer to cytiva.com.

Products

Product	Pack size Pack size	Product code
MabSelect PrismA X	25 mL	17550101
	200 mL	17550102
	1 L	17550103
	5 L	17550104
	10 L	17550105

Related products

Product	Pack size	Product code
HiTrap MabSelect PrismA X	1 × 1 mL	17550151
	5 × 1 mL	17550152
	1 × 5 mL	17550153
	5 × 5 mL	17550154
HiScreen MabSelect PrismA X	1 × 4.7 mL	17550115
Tricorn 5 Medium Filter Kit	1 × 5 units	29258132
Slurry Concentration Kit	1 unit	29096100

Give feedback on this document

Visit cytiva.com/techdocfeedback or scan the QR code.

cytiva.com

 $Cytiva \ and \ the \ Drop \ logo \ are \ trademarks \ of \ Life \ Sciences \ IP \ Holdings \ Corporation \ or \ an \ affiliate \ doing \ business \ as \ Cytiva.$

ÄKTA, AxiChrom, BioProcess, HiScale, HiScreen, HiTrap, MabSelect, MabSelect PrismA, MabSelect SuRe, Media Wand, and Tricorn are trademarks of Global Life Sciences Solutions USA LLC or an affiliate doing business as Cytiva.

Any other third-party trademarks are the property of their respective owners.

© 2025 Cytiva

For local office contact information, visit cytiva.com/contact

29874938 AA V:1 06/2025